Identification of Diffusively Coupled Linear Networks Through Structured Polynomial Models

Physical dynamic networks most commonly consist of interconnections of physical components that can be described by diffusive couplings. These diffusive couplings imply that the cause-effect relationships in the interconnections are symmetric, and therefore, physical dynamic networks can be represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-06, Vol.68 (6), p.3513-3528
Hauptverfasser: Kivits, E. M. M., Van den Hof, Paul M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Physical dynamic networks most commonly consist of interconnections of physical components that can be described by diffusive couplings. These diffusive couplings imply that the cause-effect relationships in the interconnections are symmetric, and therefore, physical dynamic networks can be represented by undirected graphs. This article shows how prediction error identification methods developed for linear time-invariant systems in polynomial form can be configured to consistently identify the parameters and the interconnection structure of diffusively coupled networks. Furthermore, a multistep least squares convex optimization algorithm is developed to solve the nonconvex optimization problem that results from the identification method.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3191406