Delay-Dependent Energy-to-Peak Stability of 2-D Time-Delay Roesser Systems With Multiplicative Stochastic Noises
This paper is concerned with the problem of energy-to-peak stochastic stability (EPSS) of two-dimensional (2-D) Roesser systems in the presence of state time-varying delays and multiplicative noises. First, a scheme that ensures a 2-D stochastic time-delay system is stochastically stable with an att...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2019-12, Vol.64 (12), p.5066-5073 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the problem of energy-to-peak stochastic stability (EPSS) of two-dimensional (2-D) Roesser systems in the presence of state time-varying delays and multiplicative noises. First, a scheme that ensures a 2-D stochastic time-delay system is stochastically stable with an attenuation performance is proposed. The scheme presented in this paper can be regarded as an extension of the Lyapunov-Krasovskii functional method for 2-D stochastic time-delay systems, focusing on the EPSS problem. The proposed scheme is then utilized to derive delay-dependent EPSS conditions in terms of tractable linear matrix inequalities. A numerical example is given to illustrate the effectiveness of the derived stability conditions. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2019.2907888 |