Efficient Simulation Sampling Allocation Using Multifidelity Models

Simulation is often used to estimate the performance of alternative system designs for selecting the best. For a complex system, high-fidelity simulation is usually time-consuming and expensive. In this paper, we provide a new framework that integrates information from the multifidelity models to in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2019-08, Vol.64 (8), p.3156-3169
Hauptverfasser: Peng, Yijie, Xu, Jie, Lee, Loo Hay, Hu, Jianqiang, Chen, Chun-Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simulation is often used to estimate the performance of alternative system designs for selecting the best. For a complex system, high-fidelity simulation is usually time-consuming and expensive. In this paper, we provide a new framework that integrates information from the multifidelity models to increase efficiency for selecting the best. A Gaussian mixture model is introduced to capture performance clustering information in the multifidelity models. Posterior information obtained by a clustering analysis incorporates both cluster-wise information and idiosyncratic information for each design. We propose a new budget allocation method to efficiently allocate high-fidelity simulation replications, utilizing posterior information. Numerical experiments show that the proposed multifidelity framework achieves a significant boost in efficiency.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2018.2886165