Complexity Certification of a Distributed Augmented Lagrangian Method

In this paper, we present complexity certification results for a distributed augmented Lagrangian (AL) algorithm used to solve convex optimization problems involving globally coupled linear constraints. Our method relies on the accelerated distributed AL (ADAL) algorithm, which can handle the couple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-03, Vol.63 (3), p.827-834
Hauptverfasser: Soomin Lee, Chatzipanagiotis, Nikolaos, Zavlanos, Michael M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present complexity certification results for a distributed augmented Lagrangian (AL) algorithm used to solve convex optimization problems involving globally coupled linear constraints. Our method relies on the accelerated distributed AL (ADAL) algorithm, which can handle the coupled linear constraints in a distributed manner based on local estimates of the AL. We show that the theoretical complexity of ADAL to reach an ε-optimal solution both in terms of suboptimality and infeasibility is O(1/ε) iterations. Moreover, we provide a valid upper bound for the optimal dual multiplier, which enables us to explicitly specify these complexity bounds. We also show how to choose the step-size parameter to minimize the bounds on the convergence rates. Finally, we discuss a motivating example, a model predictive control problem, involving a finite number of subsystems, which interact with each other via a general network.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2747503