Nonconservative Discrete-Time ISS Small-Gain Conditions for Closed Sets

This paper presents a unification and a generalization of the small-gain theory subsuming a wide range of existing small-gain theorems. In particular, we introduce small-gain conditions that are necessary and sufficient to ensure input-to-state stability (ISS) with respect to closed sets. Toward thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-05, Vol.63 (5), p.1231-1242
Hauptverfasser: Noroozi, Navid, Geiselhart, Roman, Grune, Lars, Ruffer, Bjorn S., Wirth, Fabian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a unification and a generalization of the small-gain theory subsuming a wide range of existing small-gain theorems. In particular, we introduce small-gain conditions that are necessary and sufficient to ensure input-to-state stability (ISS) with respect to closed sets. Toward this end, we first develop a Lyapunov characterization of ωISS via finite-step ωISS Lyapunov functions. Then, we provide the small-gain conditions to guarantee ωISS of a network of systems. Finally, applications of our results to partial ISS, ISS of time-varying systems, synchronization problems, incremental stability, and distributed observers are given.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2735194