Inverse Parametric Optimization in a Set-Membership Error-in-Variables Framework
In this study, we aim to recover the interval hull of the set of feasible cost functions that can make uncertain observations optimal for a class of nonlinear constrained parametric optimization problems when all uncertainty and disturbances acting on observations or modeling are taken bounded but o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2017-12, Vol.62 (12), p.6536-6543 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we aim to recover the interval hull of the set of feasible cost functions that can make uncertain observations optimal for a class of nonlinear constrained parametric optimization problems when all uncertainty and disturbances acting on observations or modeling are taken bounded but otherwise unknown. Fostering on inverse Karush-Kuhn-Tucker optimality conditions, we first state the solving equations as a constraint satisfaction problem, then show how to derive a safe overapproximation of the feasible solution set combining standard numerical tools and a posteriori validation with guaranteed methods based on interval analysis. The approach is evaluated on two well-tuned numerical examples: A discrete unicycle robot model and a planar elastica model, respectively. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2017.2707534 |