Inverse Parametric Optimization in a Set-Membership Error-in-Variables Framework

In this study, we aim to recover the interval hull of the set of feasible cost functions that can make uncertain observations optimal for a class of nonlinear constrained parametric optimization problems when all uncertainty and disturbances acting on observations or modeling are taken bounded but o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2017-12, Vol.62 (12), p.6536-6543
Hauptverfasser: Panchea, Adina M., Ramdani, Nacim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we aim to recover the interval hull of the set of feasible cost functions that can make uncertain observations optimal for a class of nonlinear constrained parametric optimization problems when all uncertainty and disturbances acting on observations or modeling are taken bounded but otherwise unknown. Fostering on inverse Karush-Kuhn-Tucker optimality conditions, we first state the solving equations as a constraint satisfaction problem, then show how to derive a safe overapproximation of the feasible solution set combining standard numerical tools and a posteriori validation with guaranteed methods based on interval analysis. The approach is evaluated on two well-tuned numerical examples: A discrete unicycle robot model and a planar elastica model, respectively.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2707534