State and Unknown Input Observers for Nonlinear Systems With Bounded Exogenous Inputs
A systematic design methodology for state observers for a large class of nonlinear systems with bounded exogenous inputs (disturbance inputs and sensor noise) is proposed. The nonlinearities under consideration are characterized by an incremental quadratic constraint parameterized by a set of multip...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2017-11, Vol.62 (11), p.5497-5510 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A systematic design methodology for state observers for a large class of nonlinear systems with bounded exogenous inputs (disturbance inputs and sensor noise) is proposed. The nonlinearities under consideration are characterized by an incremental quadratic constraint parameterized by a set of multiplier matrices. Linear matrix inequalities are developed to construct observer gains, which ensure that a performance output based on the state estimation error satisfies a prescribed degree of accuracy. Furthermore, conditions guaranteeing estimation of the unknown inputs to arbitrary degrees of accuracy are provided. The proposed scheme is illustrated with a numerical example, which does not satisfy the so-called "matching conditions." |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2017.2681520 |