A Characterization of Lyapunov Inequalities for Stability of Switched Systems
We study stability criteria for discrete-time switched systems and provide a meta-theorem that characterizes all Lyapunov theorems of a certain canonical type. For this purpose, we investigate the structure of sets of LMIs that provide a sufficient condition for stability. Various such conditions ha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2017-06, Vol.62 (6), p.3062-3067 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study stability criteria for discrete-time switched systems and provide a meta-theorem that characterizes all Lyapunov theorems of a certain canonical type. For this purpose, we investigate the structure of sets of LMIs that provide a sufficient condition for stability. Various such conditions have been proposed in the literature in the past 15 years. We prove in this note that a family of language-theoretic conditions recently provided by the authors encapsulates all the possible LMI conditions, thus putting a conclusion to this research effort. As a corollary, we show that it is PSPACE-complete to recognize whether a particular set of LMIs implies stability of a switched system. Finally, we provide a geometric interpretation of these conditions, in terms of existence of an invariant set. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2017.2671345 |