Convergence of Distributed Randomized PageRank Algorithms

The PageRank algorithm employed by Google quantifies the importance of each page by the link structure of the web. To reduce the computational burden the distributed randomized PageRank algorithms (DRPA) recently appeared in literature suggest pages to update their ranking values by locally communic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2013-12, Vol.58 (12), p.3255-3259
Hauptverfasser: Zhao, Wenxiao, Chen, Han-Fu, Fang, Hai-Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The PageRank algorithm employed by Google quantifies the importance of each page by the link structure of the web. To reduce the computational burden the distributed randomized PageRank algorithms (DRPA) recently appeared in literature suggest pages to update their ranking values by locally communicating with the linked pages. The main objective of the note is to show that the estimates generated by DRPA converge to the true PageRank value almost surely under the assumption that the randomization is realized in an independent and identically distributed (iid) way. This is achieved with the help of the stochastic approximation (SA) and its convergence results.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2013.2264553