On the Laguerre Rational Approximation to Fractional Discrete Derivative and Integral Operators

This note ties the Laguerre continued fraction expansion of the Tustin fractional discrete-time operator to irreducible Jacobi tri-diagonal matrices. The aim is to prove that the Laguerre approximation to the Tustin fractional operator s -ν (or s ν ) is stable and minimum-phase for any value 0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2013-06, Vol.58 (6), p.1579-1585
1. Verfasser: Maione, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This note ties the Laguerre continued fraction expansion of the Tustin fractional discrete-time operator to irreducible Jacobi tri-diagonal matrices. The aim is to prove that the Laguerre approximation to the Tustin fractional operator s -ν (or s ν ) is stable and minimum-phase for any value 0
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2013.2244273