ARMA Identification of Graphical Models

Consider a Gaussian stationary stochastic vector process with the property that designated pairs of components are conditionally independent given the rest of the components. Such processes can be represented on a graph where the components are nodes and the lack of a connecting link between two nod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2013-05, Vol.58 (5), p.1167-1178
Hauptverfasser: Avventi, Enrico, Lindquist, Wahlberg, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a Gaussian stationary stochastic vector process with the property that designated pairs of components are conditionally independent given the rest of the components. Such processes can be represented on a graph where the components are nodes and the lack of a connecting link between two nodes signifies conditional independence. This leads to a sparsity pattern in the inverse of the matrix-valued spectral density. Such graphical models find applications in speech, bioinformatics, image processing, econometrics and many other fields, where the problem to fit an autoregressive (AR) model to such a process has been considered. In this paper we take this problem one step further, namely to fit an autoregressive moving-average (ARMA) model to the same data. We develop a theoretical framework and an optimization procedure which also spreads further light on previous approaches and results. This procedure is then applied to the identification problem of estimating the ARMA parameters as well as the topology of the graph from statistical data.
ISSN:0018-9286
1558-2523
1558-2523
DOI:10.1109/TAC.2012.2231551