Robust State Space Filtering Under Incremental Model Perturbations Subject to a Relative Entropy Tolerance

This paper considers robust filtering for a nominal Gaussian state-space model, when a relative entropy tolerance is applied to each time increment of a dynamical model. The problem is formulated as a dynamic minimax game where the maximizer adopts a myopic strategy. This game is shown to admit a sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2013-03, Vol.58 (3), p.682-695
Hauptverfasser: Levy, B. C., Nikoukhah, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers robust filtering for a nominal Gaussian state-space model, when a relative entropy tolerance is applied to each time increment of a dynamical model. The problem is formulated as a dynamic minimax game where the maximizer adopts a myopic strategy. This game is shown to admit a saddle point whose structure is characterized by applying and extending results presented earlier in "Robust least-squares estimation with a relative entropy constraint" (B. C. Levy and R. Nikoukhah, IEEE Trans. Inf. Theory, vol. 50, no. 1, 89-104, Jan. 2004) for static least-squares estimation. The resulting minimax filter takes the form of a risk-sensitive filter with a time varying risk sensitivity parameter, which depends on the tolerance bound applied to the model dynamics and observations at the corresponding time index. The least-favorable model is constructed and used to evaluate the performance of alternative filters. Simulations comparing the proposed risk-sensitive filter to a standard Kalman filter show a significant performance advantage when applied to the least-favorable model, and only a small performance loss for the nominal model.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2012.2219952