Segregation of Heterogeneous Units in a Swarm of Robotic Agents
There are several examples in natural systems that exhibit the self-organizing behavior of segregation when different types of units interact with each other. One of the best examples is a system of biological cells of heterogeneous types that has the ability to self-organize into specific formation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2010-03, Vol.55 (3), p.743-748 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are several examples in natural systems that exhibit the self-organizing behavior of segregation when different types of units interact with each other. One of the best examples is a system of biological cells of heterogeneous types that has the ability to self-organize into specific formations, form different types of organs and, ultimately, develop into a living organism. Previous research in this area has indicated that such segregations in biological cells and tissues are made possible because of the differences in adhesivity between various types of cells or tissues. Inspired by this differential adhesivity model, this technical note presents a decentralized approach utilizing differential artificial potential to achieve the segregation behavior in a swarm of heterogeneous robotic agents. The method is based on the proposition that agents experience different magnitudes of potential while interacting with agents of different types. Stability analysis of the system with the proposed approach in the Lyapunov sense is carried out in this technical note. Extensive simulations and analytical investigations suggest that the proposed method would lead a population of two types of agents to a segregated configuration. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2010.2040494 |