Solution of the optimal constant output feedback problem by conjugate gradients
The problem of finding the optimal, constant output feedback matrix for linear time-invariant multivariable systems with quadratic cost is reconsidered. Simple formulae for the gradient matrix are developed and used in a Fletcher-Powell-Davidon algorithm. Computational results are presented.
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1974-08, Vol.19 (4), p.434-435 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of finding the optimal, constant output feedback matrix for linear time-invariant multivariable systems with quadratic cost is reconsidered. Simple formulae for the gradient matrix are developed and used in a Fletcher-Powell-Davidon algorithm. Computational results are presented. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.1974.1100585 |