An innovations approach to least squares estimation--Part IV: Recursive estimation given lumped covariance functions
We show how to recursively compute linear least squares filtered and smoothed estimates for a lumped signal process in additive white noise. However, unlike the Kalman-Bucy problem, here only the covariance function of the signal process is known and not a specific state-variable model. The solution...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1971-12, Vol.16 (6), p.720-727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show how to recursively compute linear least squares filtered and smoothed estimates for a lumped signal process in additive white noise. However, unlike the Kalman-Bucy problem, here only the covariance function of the signal process is known and not a specific state-variable model. The solutions are based on the innovations representation for the observation process. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.1971.1099835 |