An innovations approach to least squares estimation--Part IV: Recursive estimation given lumped covariance functions

We show how to recursively compute linear least squares filtered and smoothed estimates for a lumped signal process in additive white noise. However, unlike the Kalman-Bucy problem, here only the covariance function of the signal process is known and not a specific state-variable model. The solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1971-12, Vol.16 (6), p.720-727
Hauptverfasser: Kailath, T., Geesey, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how to recursively compute linear least squares filtered and smoothed estimates for a lumped signal process in additive white noise. However, unlike the Kalman-Bucy problem, here only the covariance function of the signal process is known and not a specific state-variable model. The solutions are based on the innovations representation for the observation process.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.1971.1099835