Cybersecurity of Autonomous Vehicles: A Systematic Literature Review of Adversarial Attacks and Defense Models

Autonomous driving (AD) has developed tremendously in parallel with the ongoing development and improvement of deep learning (DL) technology. However, the uptake of artificial intelligence (AI) in AD as the core enabling technology raises serious cybersecurity issues. An enhanced attack surface has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of vehicular technology 2023-01, Vol.4, p.1-23
Hauptverfasser: Girdhar, Mansi, Hong, Junho, Moore, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autonomous driving (AD) has developed tremendously in parallel with the ongoing development and improvement of deep learning (DL) technology. However, the uptake of artificial intelligence (AI) in AD as the core enabling technology raises serious cybersecurity issues. An enhanced attack surface has been spurred on by the rising digitization of vehicles and the integration of AI features. The performance of the autonomous vehicle (AV)-based applications is constrained by the DL models' susceptibility to adversarial attacks despite their great potential. Hence, AI-enabled AVs face numerous security threats, which prevent the large-scale adoption of AVs. Therefore, it becomes crucial to evolve existing cybersecurity practices to deal with risks associated with the increased uptake of AI. Furthermore, putting defense models into practice against adversarial attacks has grown in importance as a field of study amongst researchers. Therefore, this study seeks to provide an overview of the most recent adversarial defensive and attack models developed in the domain of AD.
ISSN:2644-1330
2644-1330
DOI:10.1109/OJVT.2023.3265363