FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery

Goal: FetSAM represents a cutting-edge deep learning model aimed at revolutionizing fetal head ultrasound segmentation, thereby elevating prenatal diagnostic precision. Methods: Utilizing a comprehensive dataset-the largest to date for fetal head metrics-FetSAM incorporates prompt-based learning. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of engineering in medicine and biology 2024-01, Vol.5, p.281-295
Hauptverfasser: Alzubaidi, Mahmood, Shah, Uzair, Agus, Marco, Househ, Mowafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Goal: FetSAM represents a cutting-edge deep learning model aimed at revolutionizing fetal head ultrasound segmentation, thereby elevating prenatal diagnostic precision. Methods: Utilizing a comprehensive dataset-the largest to date for fetal head metrics-FetSAM incorporates prompt-based learning. It distinguishes itself with a dual loss mechanism, combining Weighted DiceLoss and Weighted Lovasz Loss, optimized through AdamW and underscored by class weight adjustments for better segmentation balance. Performance benchmarks against prominent models such as U-Net, DeepLabV3, and Segformer highlight its efficacy. Results: FetSAM delivers unparalleled segmentation accuracy, demonstrated by a DSC of 0.90117, HD of 1.86484, and ASD of 0.46645. Conclusion: FetSAM sets a new benchmark in AI-enhanced prenatal ultrasound analysis, providing a robust, precise tool for clinical applications and pushing the envelope of prenatal care with its groundbreaking dataset and segmentation capabilities.
ISSN:2644-1276
2644-1276
DOI:10.1109/OJEMB.2024.3382487