Finite Sample Analysis of Minmax Variant of Offline Reinforcement Learning for General MDPs
In this work, we analyze the finite sample complexity bounds for offline reinforcement learning with general state, general function space and state-dependent action sets. The algorithm analyzed does not require the knowledge of the data-collection policy as compared to earlier works. We show that o...
Gespeichert in:
Veröffentlicht in: | IEEE Open Journal of Control Systems 2022, Vol.1, p.152-163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we analyze the finite sample complexity bounds for offline reinforcement learning with general state, general function space and state-dependent action sets. The algorithm analyzed does not require the knowledge of the data-collection policy as compared to earlier works. We show that one can compute an \epsilon-optimal Q function (state-action value function) using O(1/\epsilon ^{4}) i.i.d. samples of state-action-reward-next state tuples. |
---|---|
ISSN: | 2694-085X 2694-085X |
DOI: | 10.1109/OJCSYS.2022.3198660 |