Deep Learning in Physical Layer Communications

DL has shown great potential to revolutionize communication systems. This article provides an overview of the recent advancements in DL-based physical layer communications. DL can improve the performance of each individual block in communication systems or optimize the whole transmitter/receiver. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications 2019-04, Vol.26 (2), p.93-99
Hauptverfasser: Qin, Zhijin, Ye, Hao, Li, Geoffrey Ye, Juang, Biing-Hwang Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DL has shown great potential to revolutionize communication systems. This article provides an overview of the recent advancements in DL-based physical layer communications. DL can improve the performance of each individual block in communication systems or optimize the whole transmitter/receiver. Therefore, we categorize the applications of DL in physical layer communications into systems with and without block structures. For DL-based communication systems with the block structure, we demonstrate the power of DL in signal compression and signal detection. We also discuss the recent endeavors in developing DL-based end-to-end communication systems. Finally, potential research directions are identified to boost intelligent physical layer communications. Introduction
ISSN:1536-1284
1558-0687
DOI:10.1109/MWC.2019.1800601