Intelligent Network Security Monitoring Based on Optimum-Path Forest Clustering

Distinguishing outliers from normal data in wireless sensor networks has been a big challenge in the anomaly detection domain, mostly due to the nature of the anomalies, such as software or hardware failures, reading errors or malicious attacks, just to name a few. In this article, we introduce an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2019-03, Vol.33 (2), p.126-131
Hauptverfasser: Guimaraes, Raniere Rocha, Passos, Leandro A., Filho, Raimir Holanda, Albuquerque, Victor Hugo C. de, Rodrigues, Joel J. P. C., Komarov, Mikhail M., Papa, Joao Paulo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distinguishing outliers from normal data in wireless sensor networks has been a big challenge in the anomaly detection domain, mostly due to the nature of the anomalies, such as software or hardware failures, reading errors or malicious attacks, just to name a few. In this article, we introduce an anomaly detection-based OPF classifier in the aforementioned context. The results are compared against one-class support vector machines and multivariate Gaussian distribution. Additionally, we also propose to employ meta-heuristic optimization techniques to finetune the OPF classifier in the context of anomaly detection in wireless sensor networks.
ISSN:0890-8044
1558-156X
DOI:10.1109/MNET.2018.1800151