Greening the cloud using renewable-energy-aware service migration
Cloud computing is the new paradigm of operation in information technology. While cloud computing infrastructures have benefits, their energy consumption is becoming a growing concern. Data centers, which are used to provide the infrastructure and resource pool for cloud computing, consume a large a...
Gespeichert in:
Veröffentlicht in: | IEEE network 2013-11, Vol.27 (6), p.36-43 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cloud computing is the new paradigm of operation in information technology. While cloud computing infrastructures have benefits, their energy consumption is becoming a growing concern. Data centers, which are used to provide the infrastructure and resource pool for cloud computing, consume a large amount of energy. Future energy consumption predictions of these data centers are even bigger concerns. To reduce this energy consumption, and hence the carbon footprint and greenhouse gas emission of cloud computing, and information technology in general, energy-efficient methods of operation have to be investigated and adopted. In addition, renewable energy usage in place of non-renewable can also reduce carbon emission. However, due to its intermittency and volatility, renewable energy cannot be used to its full potential. In this study, we introduce the renewable-energy- aware cloud service and virtual machine migration to relocate energy demand using dynamic and flexible cloud resource allocation techniques, and help overcome the challenges of renewable energy. Results from a U.S.-wide cloud network infrastructure show that, using simple migration techniques, up to 30 percent nonrenewable energy can be replaced by renewable energy, while consuming only a small amount of extra resources and energy to perform demand relocation. |
---|---|
ISSN: | 0890-8044 1558-156X |
DOI: | 10.1109/MNET.2013.6678925 |