Machine Learning for Spectrum Defragmentation in Space-Division Multiplexing Elastic Optical Networks

In Elastic Optical Networks with Space Division Multiplexing, the dynamic allocation and deallocation of frequency slots can generate spectrum fragmentation, which increases the blocking of requests for lightpath establishment. In this article, we introduce a reactive algorithm and a proactive one t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2021-01, Vol.35 (1), p.326-332
Hauptverfasser: Trindade, Silvana, da Fonseca, Nelson L.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Elastic Optical Networks with Space Division Multiplexing, the dynamic allocation and deallocation of frequency slots can generate spectrum fragmentation, which increases the blocking of requests for lightpath establishment. In this article, we introduce a reactive algorithm and a proactive one that can jointly reduce spectrum fragmentation. We introduce a novel defragmentation approach based on an unsupervised machine learning technique to rearrange a fragmented spectrum by clustering lightpaths. A Routing, Modulation Format, Core, and Spectrum Allocation algorithm uses information on the clustering of lightpaths to establish new lightpaths for incoming requests. Results show that our approach can reduce the blocking of requests and spectrum fragmentation.
ISSN:0890-8044
1558-156X
DOI:10.1109/MNET.011.2000367