Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators
The authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2017, Vol.37 (3), p.12-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 3 |
container_start_page | 12 |
container_title | IEEE MICRO |
container_volume | 37 |
creator | Yu-Hsin Chen Emer, Joel Sze, Vivienne |
description | The authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing dataflows in processing a state-of-the-art DNN, this work provides guidelines for future DNN accelerator designs. |
doi_str_mv | 10.1109/MM.2017.54 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MM_2017_54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7948671</ieee_id><sourcerecordid>1910792014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-768b029b4c9fccd25f19f5b0304ba9524c3dbdfbf73ab46f4520213ffa147fd83</originalsourceid><addsrcrecordid>eNo9kDtPwzAYRS0EEqWwsLJYYkNK8StxPFalPKSGMtDZchx_VUoaBztVVX49qYqY7nJ079VB6JaSCaVEPRbFhBEqJ6k4QyOquEwEFfwcjQiTLKGSs0t0FeOGEJIyko_QxyrW7Ro_md5A4_e493jZ9fW2_nF43rqwPuA5QG1r19oD9oCfnOvwu9sF0wzR7334wlNrXeOC6X2I1-gCTBPdzV-O0ep5_jl7TRbLl7fZdJFYnmZ9IrO8JEyVwiqwtmIpUAVpSTgRpVEpE5ZXZQUlSG5KkYEY7jLKAQwVEqqcj9H9qbcL_nvnYq83fhfaYVJTRYlUgwcxUA8nygYfY3Cgu1BvTThoSvTRmC4KfTSm0yN8d4Jr59w_KJXIM0n5L-IaZlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910792014</pqid></control><display><type>article</type><title>Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators</title><source>IEEE Electronic Library (IEL)</source><creator>Yu-Hsin Chen ; Emer, Joel ; Sze, Vivienne</creator><creatorcontrib>Yu-Hsin Chen ; Emer, Joel ; Sze, Vivienne</creatorcontrib><description>The authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing dataflows in processing a state-of-the-art DNN, this work provides guidelines for future DNN accelerator designs.</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2017.54</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Accelerators ; Computer architecture ; dataflow ; Deep learning ; deep neural network ; Energy consumption ; Energy efficiency ; Energy management ; Neural networks ; Optimization ; Power efficiency ; Program processors ; Radio frequency ; Random access memory ; spatial architecture ; State of the art</subject><ispartof>IEEE MICRO, 2017, Vol.37 (3), p.12-21</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-768b029b4c9fccd25f19f5b0304ba9524c3dbdfbf73ab46f4520213ffa147fd83</citedby><cites>FETCH-LOGICAL-c356t-768b029b4c9fccd25f19f5b0304ba9524c3dbdfbf73ab46f4520213ffa147fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7948671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7948671$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu-Hsin Chen</creatorcontrib><creatorcontrib>Emer, Joel</creatorcontrib><creatorcontrib>Sze, Vivienne</creatorcontrib><title>Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>The authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing dataflows in processing a state-of-the-art DNN, this work provides guidelines for future DNN accelerator designs.</description><subject>Accelerators</subject><subject>Computer architecture</subject><subject>dataflow</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Power efficiency</subject><subject>Program processors</subject><subject>Radio frequency</subject><subject>Random access memory</subject><subject>spatial architecture</subject><subject>State of the art</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDtPwzAYRS0EEqWwsLJYYkNK8StxPFalPKSGMtDZchx_VUoaBztVVX49qYqY7nJ079VB6JaSCaVEPRbFhBEqJ6k4QyOquEwEFfwcjQiTLKGSs0t0FeOGEJIyko_QxyrW7Ro_md5A4_e493jZ9fW2_nF43rqwPuA5QG1r19oD9oCfnOvwu9sF0wzR7334wlNrXeOC6X2I1-gCTBPdzV-O0ep5_jl7TRbLl7fZdJFYnmZ9IrO8JEyVwiqwtmIpUAVpSTgRpVEpE5ZXZQUlSG5KkYEY7jLKAQwVEqqcj9H9qbcL_nvnYq83fhfaYVJTRYlUgwcxUA8nygYfY3Cgu1BvTThoSvTRmC4KfTSm0yN8d4Jr59w_KJXIM0n5L-IaZlQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Yu-Hsin Chen</creator><creator>Emer, Joel</creator><creator>Sze, Vivienne</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2017</creationdate><title>Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators</title><author>Yu-Hsin Chen ; Emer, Joel ; Sze, Vivienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-768b029b4c9fccd25f19f5b0304ba9524c3dbdfbf73ab46f4520213ffa147fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accelerators</topic><topic>Computer architecture</topic><topic>dataflow</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Power efficiency</topic><topic>Program processors</topic><topic>Radio frequency</topic><topic>Random access memory</topic><topic>spatial architecture</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu-Hsin Chen</creatorcontrib><creatorcontrib>Emer, Joel</creatorcontrib><creatorcontrib>Sze, Vivienne</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu-Hsin Chen</au><au>Emer, Joel</au><au>Sze, Vivienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2017</date><risdate>2017</risdate><volume>37</volume><issue>3</issue><spage>12</spage><epage>21</epage><pages>12-21</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>The authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing dataflows in processing a state-of-the-art DNN, this work provides guidelines for future DNN accelerator designs.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MM.2017.54</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0272-1732 |
ispartof | IEEE MICRO, 2017, Vol.37 (3), p.12-21 |
issn | 0272-1732 1937-4143 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MM_2017_54 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerators Computer architecture dataflow Deep learning deep neural network Energy consumption Energy efficiency Energy management Neural networks Optimization Power efficiency Program processors Radio frequency Random access memory spatial architecture State of the art |
title | Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Dataflow%20to%20Optimize%20Energy%20Efficiency%20of%20Deep%20Neural%20Network%20Accelerators&rft.jtitle=IEEE%20MICRO&rft.au=Yu-Hsin%20Chen&rft.date=2017&rft.volume=37&rft.issue=3&rft.spage=12&rft.epage=21&rft.pages=12-21&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2017.54&rft_dat=%3Cproquest_RIE%3E1910792014%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910792014&rft_id=info:pmid/&rft_ieee_id=7948671&rfr_iscdi=true |