Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators

The authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2017, Vol.37 (3), p.12-21
Hauptverfasser: Yu-Hsin Chen, Emer, Joel, Sze, Vivienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing dataflows in processing a state-of-the-art DNN, this work provides guidelines for future DNN accelerator designs.
ISSN:0272-1732
1937-4143
DOI:10.1109/MM.2017.54