Automating Stressmark Generation for Testing Processor Voltage Fluctuations
Rapid current changes (large di/dt) can lead to significant power supply voltage droops and timing errors in modern microprocessors. To test a processor's resilience to such errors and determine appropriate operating conditions, engineers generally create manual di/dt stressmarks that have larg...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2013-07, Vol.33 (4), p.66-75 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rapid current changes (large di/dt) can lead to significant power supply voltage droops and timing errors in modern microprocessors. To test a processor's resilience to such errors and determine appropriate operating conditions, engineers generally create manual di/dt stressmarks that have large current variations at close to the power distribution network's resonance frequency to induce large voltage droops. This process is time-consuming and might need to be repeated several times to generate appropriate stressmarks for different system conditions (for example, different frequencies or di/dt throttling mechanisms). Furthermore, generating efficient di/dt stressmarks for multicore processors is difficult because of their complexity and synchronization issues. In this article, the authors measure and analyze di/dt issues on state-of-the-art multicore x86 systems. They present an automated di/dt stressmark generation framework called Audit to generate di/dt stressmarks quickly and effectively for multicore systems. |
---|---|
ISSN: | 0272-1732 1937-4143 |
DOI: | 10.1109/MM.2013.70 |