Time-to-Event Predictive Modeling for Chronic Conditions Using Electronic Health Records

Although electronic health records (EHRs) hold promise for supporting clinical decision making, few studies have used them to model the progression of chronic conditions. To examine the feasibility of EHR-based predictive models for chronic conditions and to mitigate the associated data challenges,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2014-05, Vol.29 (3), p.14-20
Hauptverfasser: Lin, Yu-Kai, Chen, Hsinchun, Brown, Randall A., Li, Shu-Hsing, Yang, Hung-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although electronic health records (EHRs) hold promise for supporting clinical decision making, few studies have used them to model the progression of chronic conditions. To examine the feasibility of EHR-based predictive models for chronic conditions and to mitigate the associated data challenges, the authors develop a time-to-event predictive modeling framework consisting of five analytical steps: guideline-based feature selection, temporal regularization, data abstraction, multiple imputation, and extended Cox models. Using concept- and temporal-abstracted features, the proposed model attained significantly improved performance over the model using only base features.
ISSN:1541-1672
1941-1294
DOI:10.1109/MIS.2014.18