HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers

HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing magazine 2017-12, Vol.5 (4), p.79-85
Hauptverfasser: Munoz-Mari, Jordi, Izquierdo-Verdiguier, Emma, Campos-Taberner, Manuel, Perez-Suay, Adrian, Gomez-Chova, Luis, Mateo-Garcia, Gonzalo, Ruescas, Ana B., Laparra, Valero, Padron, Jose A., Amoros-Lopez, Julia, Camps-Valls, Gustau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 4
container_start_page 79
container_title IEEE geoscience and remote sensing magazine
container_volume 5
creator Munoz-Mari, Jordi
Izquierdo-Verdiguier, Emma
Campos-Taberner, Manuel
Perez-Suay, Adrian
Gomez-Chova, Luis
Mateo-Garcia, Gonzalo
Ruescas, Ana B.
Laparra, Valero
Padron, Jose A.
Amoros-Lopez, Julia
Camps-Valls, Gustau
description HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality, noise sources, and levels. The registered user can download training data pairs (spectra and land cover/use labels) and submit the predictions for unseen testing spectra. The system then evaluates the accuracy and robustness of the classifier, and it reports different scores as well as a ranked list of the best methods and users. The system is modular, scalable, and ever-growing in data sets and classifier results.
doi_str_mv 10.1109/MGRS.2017.2762476
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MGRS_2017_2762476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8113131</ieee_id><sourcerecordid>10_1109_MGRS_2017_2762476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-5ff3349143d4e426a94f9960b26fc3d1b78a533df43be985807777c3bd4f78be3</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWGofQLzJC2zNJNkcvKtF20JLpVW8XJLdSV3dbUvSm769u1T8B-YA8w_DR8g9sDEAs4-r2WY75gz0mGvFpVZXZMBBmUwZAdddL7XIuLD6loxS-madTA4WzICs5-cjxqXz2KyQPtEJ_URP3xp3CofY0i7RZ9yXX62LP_V-RzfYHk6YbXGf-nHRuh3SaeNSqkONMd2Rm-CahKO_OiQfry_v03m2XM8W08kyK7nKT1keghDSghSVRMmVszJYq5jnKpSiAq-Ny4WoghQerckN051K4SsZtPEohgQud8t4SCliKI6x7p48F8CKHkrRQyl6KMUflM7zcPHUiPi_bwBEH79rvlzJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers</title><source>IEEE Electronic Library (IEL)</source><creator>Munoz-Mari, Jordi ; Izquierdo-Verdiguier, Emma ; Campos-Taberner, Manuel ; Perez-Suay, Adrian ; Gomez-Chova, Luis ; Mateo-Garcia, Gonzalo ; Ruescas, Ana B. ; Laparra, Valero ; Padron, Jose A. ; Amoros-Lopez, Julia ; Camps-Valls, Gustau</creator><creatorcontrib>Munoz-Mari, Jordi ; Izquierdo-Verdiguier, Emma ; Campos-Taberner, Manuel ; Perez-Suay, Adrian ; Gomez-Chova, Luis ; Mateo-Garcia, Gonzalo ; Ruescas, Ana B. ; Laparra, Valero ; Padron, Jose A. ; Amoros-Lopez, Julia ; Camps-Valls, Gustau</creatorcontrib><description>HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality, noise sources, and levels. The registered user can download training data pairs (spectra and land cover/use labels) and submit the predictions for unseen testing spectra. The system then evaluates the accuracy and robustness of the classifier, and it reports different scores as well as a ranked list of the best methods and users. The system is modular, scalable, and ever-growing in data sets and classifier results.</description><identifier>ISSN: 2473-2397</identifier><identifier>EISSN: 2168-6831</identifier><identifier>DOI: 10.1109/MGRS.2017.2762476</identifier><identifier>CODEN: IGRSCZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Classification algorithms ; Hyperspectral imaging ; Image classification ; Web and Internet services</subject><ispartof>IEEE geoscience and remote sensing magazine, 2017-12, Vol.5 (4), p.79-85</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-5ff3349143d4e426a94f9960b26fc3d1b78a533df43be985807777c3bd4f78be3</citedby><cites>FETCH-LOGICAL-c265t-5ff3349143d4e426a94f9960b26fc3d1b78a533df43be985807777c3bd4f78be3</cites><orcidid>0000-0002-8258-4454 ; 0000-0001-5929-3942 ; 0000-0003-1683-2138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8113131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8113131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Munoz-Mari, Jordi</creatorcontrib><creatorcontrib>Izquierdo-Verdiguier, Emma</creatorcontrib><creatorcontrib>Campos-Taberner, Manuel</creatorcontrib><creatorcontrib>Perez-Suay, Adrian</creatorcontrib><creatorcontrib>Gomez-Chova, Luis</creatorcontrib><creatorcontrib>Mateo-Garcia, Gonzalo</creatorcontrib><creatorcontrib>Ruescas, Ana B.</creatorcontrib><creatorcontrib>Laparra, Valero</creatorcontrib><creatorcontrib>Padron, Jose A.</creatorcontrib><creatorcontrib>Amoros-Lopez, Julia</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><title>HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers</title><title>IEEE geoscience and remote sensing magazine</title><addtitle>GRSM</addtitle><description>HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality, noise sources, and levels. The registered user can download training data pairs (spectra and land cover/use labels) and submit the predictions for unseen testing spectra. The system then evaluates the accuracy and robustness of the classifier, and it reports different scores as well as a ranked list of the best methods and users. The system is modular, scalable, and ever-growing in data sets and classifier results.</description><subject>Benchmark testing</subject><subject>Classification algorithms</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Web and Internet services</subject><issn>2473-2397</issn><issn>2168-6831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWGofQLzJC2zNJNkcvKtF20JLpVW8XJLdSV3dbUvSm769u1T8B-YA8w_DR8g9sDEAs4-r2WY75gz0mGvFpVZXZMBBmUwZAdddL7XIuLD6loxS-madTA4WzICs5-cjxqXz2KyQPtEJ_URP3xp3CofY0i7RZ9yXX62LP_V-RzfYHk6YbXGf-nHRuh3SaeNSqkONMd2Rm-CahKO_OiQfry_v03m2XM8W08kyK7nKT1keghDSghSVRMmVszJYq5jnKpSiAq-Ny4WoghQerckN051K4SsZtPEohgQud8t4SCliKI6x7p48F8CKHkrRQyl6KMUflM7zcPHUiPi_bwBEH79rvlzJ</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Munoz-Mari, Jordi</creator><creator>Izquierdo-Verdiguier, Emma</creator><creator>Campos-Taberner, Manuel</creator><creator>Perez-Suay, Adrian</creator><creator>Gomez-Chova, Luis</creator><creator>Mateo-Garcia, Gonzalo</creator><creator>Ruescas, Ana B.</creator><creator>Laparra, Valero</creator><creator>Padron, Jose A.</creator><creator>Amoros-Lopez, Julia</creator><creator>Camps-Valls, Gustau</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8258-4454</orcidid><orcidid>https://orcid.org/0000-0001-5929-3942</orcidid><orcidid>https://orcid.org/0000-0003-1683-2138</orcidid></search><sort><creationdate>201712</creationdate><title>HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers</title><author>Munoz-Mari, Jordi ; Izquierdo-Verdiguier, Emma ; Campos-Taberner, Manuel ; Perez-Suay, Adrian ; Gomez-Chova, Luis ; Mateo-Garcia, Gonzalo ; Ruescas, Ana B. ; Laparra, Valero ; Padron, Jose A. ; Amoros-Lopez, Julia ; Camps-Valls, Gustau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-5ff3349143d4e426a94f9960b26fc3d1b78a533df43be985807777c3bd4f78be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Benchmark testing</topic><topic>Classification algorithms</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Web and Internet services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munoz-Mari, Jordi</creatorcontrib><creatorcontrib>Izquierdo-Verdiguier, Emma</creatorcontrib><creatorcontrib>Campos-Taberner, Manuel</creatorcontrib><creatorcontrib>Perez-Suay, Adrian</creatorcontrib><creatorcontrib>Gomez-Chova, Luis</creatorcontrib><creatorcontrib>Mateo-Garcia, Gonzalo</creatorcontrib><creatorcontrib>Ruescas, Ana B.</creatorcontrib><creatorcontrib>Laparra, Valero</creatorcontrib><creatorcontrib>Padron, Jose A.</creatorcontrib><creatorcontrib>Amoros-Lopez, Julia</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munoz-Mari, Jordi</au><au>Izquierdo-Verdiguier, Emma</au><au>Campos-Taberner, Manuel</au><au>Perez-Suay, Adrian</au><au>Gomez-Chova, Luis</au><au>Mateo-Garcia, Gonzalo</au><au>Ruescas, Ana B.</au><au>Laparra, Valero</au><au>Padron, Jose A.</au><au>Amoros-Lopez, Julia</au><au>Camps-Valls, Gustau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers</atitle><jtitle>IEEE geoscience and remote sensing magazine</jtitle><stitle>GRSM</stitle><date>2017-12</date><risdate>2017</risdate><volume>5</volume><issue>4</issue><spage>79</spage><epage>85</epage><pages>79-85</pages><issn>2473-2397</issn><eissn>2168-6831</eissn><coden>IGRSCZ</coden><abstract>HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality, noise sources, and levels. The registered user can download training data pairs (spectra and land cover/use labels) and submit the predictions for unseen testing spectra. The system then evaluates the accuracy and robustness of the classifier, and it reports different scores as well as a ranked list of the best methods and users. The system is modular, scalable, and ever-growing in data sets and classifier results.</abstract><pub>IEEE</pub><doi>10.1109/MGRS.2017.2762476</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8258-4454</orcidid><orcidid>https://orcid.org/0000-0001-5929-3942</orcidid><orcidid>https://orcid.org/0000-0003-1683-2138</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2473-2397
ispartof IEEE geoscience and remote sensing magazine, 2017-12, Vol.5 (4), p.79-85
issn 2473-2397
2168-6831
language eng
recordid cdi_crossref_primary_10_1109_MGRS_2017_2762476
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Classification algorithms
Hyperspectral imaging
Image classification
Web and Internet services
title HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HyperLabelMe%20:%20A%20Web%20Platform%20for%20Benchmarking%20Remote-Sensing%20Image%20Classifiers&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20magazine&rft.au=Munoz-Mari,%20Jordi&rft.date=2017-12&rft.volume=5&rft.issue=4&rft.spage=79&rft.epage=85&rft.pages=79-85&rft.issn=2473-2397&rft.eissn=2168-6831&rft.coden=IGRSCZ&rft_id=info:doi/10.1109/MGRS.2017.2762476&rft_dat=%3Ccrossref_RIE%3E10_1109_MGRS_2017_2762476%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8113131&rfr_iscdi=true