HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers

HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing magazine 2017-12, Vol.5 (4), p.79-85
Hauptverfasser: Munoz-Mari, Jordi, Izquierdo-Verdiguier, Emma, Campos-Taberner, Manuel, Perez-Suay, Adrian, Gomez-Chova, Luis, Mateo-Garcia, Gonzalo, Ruescas, Ana B., Laparra, Valero, Padron, Jose A., Amoros-Lopez, Julia, Camps-Valls, Gustau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality, noise sources, and levels. The registered user can download training data pairs (spectra and land cover/use labels) and submit the predictions for unseen testing spectra. The system then evaluates the accuracy and robustness of the classifier, and it reports different scores as well as a ranked list of the best methods and users. The system is modular, scalable, and ever-growing in data sets and classifier results.
ISSN:2473-2397
2168-6831
DOI:10.1109/MGRS.2017.2762476