From Neuron Coverage to Steering Angle: Testing Autonomous Vehicles Effectively
A deep neural network (DNN)-based system is a black box of complex interactions, resulting in a classification or prediction. We investigate the use of realistic transformations to create new images for testing a trained autonomous vehicle DNN as well as their impact on neuron coverage.
Gespeichert in:
Veröffentlicht in: | Computer (Long Beach, Calif.) Calif.), 2021-08, Vol.54 (8), p.77-85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A deep neural network (DNN)-based system is a black box of complex interactions, resulting in a classification or prediction. We investigate the use of realistic transformations to create new images for testing a trained autonomous vehicle DNN as well as their impact on neuron coverage. |
---|---|
ISSN: | 0018-9162 1558-0814 |
DOI: | 10.1109/MC.2021.3079921 |