Channel-Estimation-Free Gradient Aggregation for Over-the-Air SIMO Federated Learning

We study the gradient aggregation in over-the-air federated learning (OA-FL), where the parameter server (PS) uses a combining vector to estimate the aggregated gradient. We propose a novel channel-estimation-free (CE-Free) gradient aggregation scheme for OA-FL, where the combining vector at the PS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2024-06, Vol.13 (6), p.1586-1590
Hauptverfasser: Zhong, Chenxi, Yuan, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the gradient aggregation in over-the-air federated learning (OA-FL), where the parameter server (PS) uses a combining vector to estimate the aggregated gradient. We propose a novel channel-estimation-free (CE-Free) gradient aggregation scheme for OA-FL, where the combining vector at the PS is trained based on the sample average approximation (SAA) method. We analyse the aggregation performance of the proposed scheme based on the large deviation theory (LDT). In the proposed scheme, the required number of training symbols is irrelevant to the number of devices, which significantly reduces the communication cost when the FL system consists of a large number of devices. Numerical results are presented to validate the effectiveness of the proposed scheme.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2024.3382498