Resilient Topology Design for Wireless Backhaul: A Deep Reinforcement Learning Approach

Ultra-dense 5G and beyond deployments are setting significant burden on cellular networks, especially for wireless backhauls. Today, a careful planning for wireless backhaul is more critical than ever. In this letter, we study the hierarchical wireless backhaul topology design problem. We introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2022-12, Vol.11 (12), p.2532-2536
Hauptverfasser: Abdelmoaty, Ahmed, Naboulsi, Diala, Dahman, Ghassan, Poitau, Gwenael, Gagnon, Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultra-dense 5G and beyond deployments are setting significant burden on cellular networks, especially for wireless backhauls. Today, a careful planning for wireless backhaul is more critical than ever. In this letter, we study the hierarchical wireless backhaul topology design problem. We introduce a Deep Reinforcement Learning (DRL) based algorithm that can solve the problem efficiently. We compare the quality of the solutions derived by our DRL approach to the optimal solution, derived according to the Integer Linear Program (ILP) formulation in our previous work. A simulation using practical channel propagation scenarios and different network densities proves that our DRL-based algorithm is providing a sub-optimal solution with different levels of resiliency. Our DRL algorithm is further shown to scale for larger instances of the problem.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2022.3207358