Image-Driven Spatial Interpolation With Deep Learning for Radio Map Construction
Radio maps are a promising technology that can boost the capability of wireless networks by enhancing spectrum efficiency. Since spatial interpolation is a critical challenge to construct a precise radio map, the latest works have proposed deep learning (DL)-based interpolation methods. However, a D...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2021-06, Vol.10 (6), p.1222-1226 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radio maps are a promising technology that can boost the capability of wireless networks by enhancing spectrum efficiency. Since spatial interpolation is a critical challenge to construct a precise radio map, the latest works have proposed deep learning (DL)-based interpolation methods. However, a DL model that achieves enough estimation accuracy for practical uses has not yet been established due to the complexity of radio propagation characteristics. Therefore, we propose a novel DL framework that transforms the spatial interpolation problem into a shadowing adjustment problem suitable for DL-based approaches. We evaluate the performance using real measurement data in urban and suburban areas to show that the proposed framework outperforms the state-of-the-art deep learning models. |
---|---|
ISSN: | 2162-2337 2162-2345 |
DOI: | 10.1109/LWC.2021.3062666 |