FDDM: Frequency-Decomposed Diffusion Model for Dose Prediction in Radiotherapy

Accurate dose distribution prediction is crucial in the radiotherapy planning. Although previous methods based on convolutional neural network have shown promising performance, they have the problem of over-smoothing, leading to prediction without important high-frequency details. Recently, diffusio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2025, Vol.32, p.721-725
Hauptverfasser: Liao, Xin, Feng, Zhenghao, Xiao, Jianghong, Peng, Xingchen, Wang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate dose distribution prediction is crucial in the radiotherapy planning. Although previous methods based on convolutional neural network have shown promising performance, they have the problem of over-smoothing, leading to prediction without important high-frequency details. Recently, diffusion model has achieved great success in computer vision, which excels in generating images with more high-frequency details, yet suffers from time-consuming and extensive computational resource consumption. To alleviate these problems, we propose Frequency-Decomposed Diffusion Model (FDDM) that refines the high-frequency subbands of the dose map. To be specific, we design a Coarse Dose Prediction Module (CDPM) to first predict a coarse dose map and then utilize 2D discrete wavelet transform to decompose the coarse dose map into a low-frequency subband and three high-frequency subbands. There is a notable difference between the coarse predicted results and ground truth in high-frequency subbands. Therefore, we design a diffusion-based module called High-Frequency Refinement Module (HFRM) that performs diffusion operation in the high-frequency components of the dose map instead of the original dose map. Extensive experiments on two in-house datasets verify the effectiveness of our approach.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2025.3531848