Unmatched Preconditioning of the Proximal Gradient Algorithm

This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2022, Vol.29, p.1122-1126
Hauptverfasser: Savanier, Marion, Chouzenoux, Emilie, Pesquet, Jean-Christophe, Riddell, Cyril
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading to increased complexity in the computation of the proximity step. To relax these requirements, we propose an unmatched preconditioning approach where two metrics are used in the gradient step and the proximity step. We provide convergence conditions for this new iterative scheme and characterize its limit point. Simulations for tomographic image reconstruction from undersampled measurements show the benefits of our approach for various simple choices of metrics.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2022.3169088