Learning Lightweight Low-Light Enhancement Network Using Pseudo Well-Exposed Images
Recently, there has been growing attention on deep learning-based low-light image enhancement algorithms. With this interest, various synthetic low-light image datasets have been released publicly. However, real-world low-light and well-exposed image pair datasets are still lacking. In this paper, w...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2022, Vol.29, p.289-293 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, there has been growing attention on deep learning-based low-light image enhancement algorithms. With this interest, various synthetic low-light image datasets have been released publicly. However, real-world low-light and well-exposed image pair datasets are still lacking. In this paper, we propose a real-world low-light image dataset and a practical lightweight low-light image enhancement network. In order to construct a large-scale real-world low-light dataset, we have not only captured under-exposed images by ourselves but also collected under-exposed images from the Internet. Then, we produce pseudo well-exposed images for each low-light image. Using pairs of a real-world low-light image and a pseudo well-exposed image, we present a lightweight deep CNN model through knowledge distillation. Experimental results demonstrate the effectiveness and practicality of the proposed method on various datasets. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2021.3134943 |