Bayesian Post-Model-Selection Estimation
Estimation after model selection refers to the problem where the exact observation model is unknown and is assumed to belong to a set of candidate models. Thus, a data-based model-selection stage is performed prior to the parameter estimation stage, which affects the performance of the subsequent es...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2021, Vol.28, p.175-179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Estimation after model selection refers to the problem where the exact observation model is unknown and is assumed to belong to a set of candidate models. Thus, a data-based model-selection stage is performed prior to the parameter estimation stage, which affects the performance of the subsequent estimation. In this letter, we investigate post-model-selection Bayesian parameter estimation of a random vector with an unknown deterministic support set, where this support set represents the model. First, we present different estimators, including the oracle minimum mean-squared-error (MMSE), the coherent MMSE, the selected MMSE, and the full model MMSE. Then, we develop the selective Bayesian Cramer-Rao bound (BCRB) and selective tighter BCRB, which are lower bounds on the mean-squared-error (MSE) for any coherent estimator. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2020.3048830 |