Edge-Aware Convolution Neural Network Based Salient Object Detection
Salient object detection has received great amount of attention in recent years. In this letter, we propose a novel salient object detection algorithm, which combines the global contextual information along with the low-level edge features. First, we train an edge detection stream based on the state...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2019-01, Vol.26 (1), p.114-118 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Salient object detection has received great amount of attention in recent years. In this letter, we propose a novel salient object detection algorithm, which combines the global contextual information along with the low-level edge features. First, we train an edge detection stream based on the state-of-the-art holistically-nested edge detection (HED) model and extract hierarchical boundary information from each VGG block. Then, the edge contours are served as the complementary edge-aware information and integrated with the saliency detection stream to depict continuous boundary for salient objects. Finally, we combine pyramid pooling modules with auxiliary side output supervision to form the multi-scale pyramid-based supervision module, providing multi-scale global contextual information for the saliency detection network. Compared with the previous methods, the proposed network contains more explicit edge-aware features and exploit the multi-scale global information more effectively. Experiments demonstrate the effectiveness of the proposed method, which achieves the state-of-the-art performance on five popular benchmarks. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2018.2881835 |