Cramér-Rao Lower Bound for State-Constrained Nonlinear Filtering

This letter presents a mean-square error lower bound for state estimation of nonlinear stochastic systems under given differentiable state constraints. Its recursive formulation permits incorporation of random process and measurement errors and is shown to be a generalization of the known lower boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-12, Vol.24 (12), p.1882-1885
Hauptverfasser: Schmitt, Lorenz, Fichter, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter presents a mean-square error lower bound for state estimation of nonlinear stochastic systems under given differentiable state constraints. Its recursive formulation permits incorporation of random process and measurement errors and is shown to be a generalization of the known lower bound for unconstrained problems. The bound is evaluated for the example of locating a ground vehicle from noisy measurements of its horizontal position and velocity incorporating a roadmap.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2017.2764540