Kernel Recursive Generalized Maximum Correntropy

In this letter, a novel kernel adaptive algorithm, called kernel recursive generalized maximum correntropy algorithm (KRGMC), is derived in a kernel space and under the generalized maximum correntropy (GMC) criterion. The proposed kernel algorithm can effectively scale down the dynamic recursive wei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-12, Vol.24 (12), p.1832-1836
Hauptverfasser: Zhao, Ji, Zhang, Hongbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, a novel kernel adaptive algorithm, called kernel recursive generalized maximum correntropy algorithm (KRGMC), is derived in a kernel space and under the generalized maximum correntropy (GMC) criterion. The proposed kernel algorithm can effectively scale down the dynamic recursive weight coefficients influenced by the impulsive estimate error to avoid the significant performance degradation. The superior performance of the proposed algorithm is verified by numerical simulations about short-time series prediction in alpha-stable noise environment.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2017.2761886