Kernel Recursive Generalized Maximum Correntropy
In this letter, a novel kernel adaptive algorithm, called kernel recursive generalized maximum correntropy algorithm (KRGMC), is derived in a kernel space and under the generalized maximum correntropy (GMC) criterion. The proposed kernel algorithm can effectively scale down the dynamic recursive wei...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2017-12, Vol.24 (12), p.1832-1836 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, a novel kernel adaptive algorithm, called kernel recursive generalized maximum correntropy algorithm (KRGMC), is derived in a kernel space and under the generalized maximum correntropy (GMC) criterion. The proposed kernel algorithm can effectively scale down the dynamic recursive weight coefficients influenced by the impulsive estimate error to avoid the significant performance degradation. The superior performance of the proposed algorithm is verified by numerical simulations about short-time series prediction in alpha-stable noise environment. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2017.2761886 |