Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement

Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-07, Vol.24 (7), p.958-962
Hauptverfasser: Erden, Fatih, Cetin, A. Enis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 962
container_issue 7
container_start_page 958
container_title IEEE signal processing letters
container_volume 24
creator Erden, Fatih
Cetin, A. Enis
description Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR.
doi_str_mv 10.1109/LSP.2017.2699924
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2017_2699924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7914698</ieee_id><sourcerecordid>10_1109_LSP_2017_2699924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-55d69d26d3db55cd38275b1e5aeb744ad771c35e66237c67a5079a04b13c7aa03</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKfvgi_5Ap2XpkmaxzGmEyaOzeFjSdN0RtqmJPGh396ODp_uuLvfH-6H0COBBSEgn7eH3SIFIhYpl1Km2RWaEcbyJKWcXI89CEikhPwW3YXwAwA5ydkMDTvjravwOkTbqmhdh12NVYeXTetCxNPaanywp041-BhsdzpPgw3RdBFvXOsadxrwl43feNn3jdVTTnR4b0JvvYrOD3ivosHvRoVfb9qRvEc3tWqCebjUOTq-rD9Xm2T78fq2Wm4TTYHFhLGKyyrlFa1KxnRF81SwkhimTCmyTFVCEE2Z4TylQnOhGAipICsJ1UIpoHMEU672LgRv6qL346t-KAgUZ3XFqK44qysu6kbkaUKsMeb_XEiScZnTP4p5bJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement</title><source>IEEE Electronic Library (IEL)</source><creator>Erden, Fatih ; Cetin, A. Enis</creator><creatorcontrib>Erden, Fatih ; Cetin, A. Enis</creatorcontrib><description>Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2017.2699924</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Delays ; Estimation ; Harmonic analysis ; Periodicity ; persistent homology ; pyro-electric infrared (PIR) sensor ; Reliability ; respiratory rate (RR) ; Sensor arrays ; Three-dimensional displays ; topological data analysis ; Topology</subject><ispartof>IEEE signal processing letters, 2017-07, Vol.24 (7), p.958-962</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-55d69d26d3db55cd38275b1e5aeb744ad771c35e66237c67a5079a04b13c7aa03</citedby><cites>FETCH-LOGICAL-c305t-55d69d26d3db55cd38275b1e5aeb744ad771c35e66237c67a5079a04b13c7aa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7914698$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7914698$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erden, Fatih</creatorcontrib><creatorcontrib>Cetin, A. Enis</creatorcontrib><title>Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR.</description><subject>Delays</subject><subject>Estimation</subject><subject>Harmonic analysis</subject><subject>Periodicity</subject><subject>persistent homology</subject><subject>pyro-electric infrared (PIR) sensor</subject><subject>Reliability</subject><subject>respiratory rate (RR)</subject><subject>Sensor arrays</subject><subject>Three-dimensional displays</subject><subject>topological data analysis</subject><subject>Topology</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKfvgi_5Ap2XpkmaxzGmEyaOzeFjSdN0RtqmJPGh396ODp_uuLvfH-6H0COBBSEgn7eH3SIFIhYpl1Km2RWaEcbyJKWcXI89CEikhPwW3YXwAwA5ydkMDTvjravwOkTbqmhdh12NVYeXTetCxNPaanywp041-BhsdzpPgw3RdBFvXOsadxrwl43feNn3jdVTTnR4b0JvvYrOD3ivosHvRoVfb9qRvEc3tWqCebjUOTq-rD9Xm2T78fq2Wm4TTYHFhLGKyyrlFa1KxnRF81SwkhimTCmyTFVCEE2Z4TylQnOhGAipICsJ1UIpoHMEU672LgRv6qL346t-KAgUZ3XFqK44qysu6kbkaUKsMeb_XEiScZnTP4p5bJ4</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Erden, Fatih</creator><creator>Cetin, A. Enis</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201707</creationdate><title>Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement</title><author>Erden, Fatih ; Cetin, A. Enis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-55d69d26d3db55cd38275b1e5aeb744ad771c35e66237c67a5079a04b13c7aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Delays</topic><topic>Estimation</topic><topic>Harmonic analysis</topic><topic>Periodicity</topic><topic>persistent homology</topic><topic>pyro-electric infrared (PIR) sensor</topic><topic>Reliability</topic><topic>respiratory rate (RR)</topic><topic>Sensor arrays</topic><topic>Three-dimensional displays</topic><topic>topological data analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erden, Fatih</creatorcontrib><creatorcontrib>Cetin, A. Enis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erden, Fatih</au><au>Cetin, A. Enis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2017-07</date><risdate>2017</risdate><volume>24</volume><issue>7</issue><spage>958</spage><epage>962</epage><pages>958-962</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2017.2699924</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2017-07, Vol.24 (7), p.958-962
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2017_2699924
source IEEE Electronic Library (IEL)
subjects Delays
Estimation
Harmonic analysis
Periodicity
persistent homology
pyro-electric infrared (PIR) sensor
Reliability
respiratory rate (RR)
Sensor arrays
Three-dimensional displays
topological data analysis
Topology
title Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Period%20Estimation%20of%20an%20Almost%20Periodic%20Signal%20Using%20Persistent%20Homology%20With%20Application%20to%20Respiratory%20Rate%20Measurement&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Erden,%20Fatih&rft.date=2017-07&rft.volume=24&rft.issue=7&rft.spage=958&rft.epage=962&rft.pages=958-962&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2017.2699924&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2017_2699924%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7914698&rfr_iscdi=true