Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement
Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sens...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2017-07, Vol.24 (7), p.958-962 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 962 |
---|---|
container_issue | 7 |
container_start_page | 958 |
container_title | IEEE signal processing letters |
container_volume | 24 |
creator | Erden, Fatih Cetin, A. Enis |
description | Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR. |
doi_str_mv | 10.1109/LSP.2017.2699924 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2017_2699924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7914698</ieee_id><sourcerecordid>10_1109_LSP_2017_2699924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-55d69d26d3db55cd38275b1e5aeb744ad771c35e66237c67a5079a04b13c7aa03</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKfvgi_5Ap2XpkmaxzGmEyaOzeFjSdN0RtqmJPGh396ODp_uuLvfH-6H0COBBSEgn7eH3SIFIhYpl1Km2RWaEcbyJKWcXI89CEikhPwW3YXwAwA5ydkMDTvjravwOkTbqmhdh12NVYeXTetCxNPaanywp041-BhsdzpPgw3RdBFvXOsadxrwl43feNn3jdVTTnR4b0JvvYrOD3ivosHvRoVfb9qRvEc3tWqCebjUOTq-rD9Xm2T78fq2Wm4TTYHFhLGKyyrlFa1KxnRF81SwkhimTCmyTFVCEE2Z4TylQnOhGAipICsJ1UIpoHMEU672LgRv6qL346t-KAgUZ3XFqK44qysu6kbkaUKsMeb_XEiScZnTP4p5bJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement</title><source>IEEE Electronic Library (IEL)</source><creator>Erden, Fatih ; Cetin, A. Enis</creator><creatorcontrib>Erden, Fatih ; Cetin, A. Enis</creatorcontrib><description>Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2017.2699924</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Delays ; Estimation ; Harmonic analysis ; Periodicity ; persistent homology ; pyro-electric infrared (PIR) sensor ; Reliability ; respiratory rate (RR) ; Sensor arrays ; Three-dimensional displays ; topological data analysis ; Topology</subject><ispartof>IEEE signal processing letters, 2017-07, Vol.24 (7), p.958-962</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-55d69d26d3db55cd38275b1e5aeb744ad771c35e66237c67a5079a04b13c7aa03</citedby><cites>FETCH-LOGICAL-c305t-55d69d26d3db55cd38275b1e5aeb744ad771c35e66237c67a5079a04b13c7aa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7914698$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7914698$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erden, Fatih</creatorcontrib><creatorcontrib>Cetin, A. Enis</creatorcontrib><title>Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR.</description><subject>Delays</subject><subject>Estimation</subject><subject>Harmonic analysis</subject><subject>Periodicity</subject><subject>persistent homology</subject><subject>pyro-electric infrared (PIR) sensor</subject><subject>Reliability</subject><subject>respiratory rate (RR)</subject><subject>Sensor arrays</subject><subject>Three-dimensional displays</subject><subject>topological data analysis</subject><subject>Topology</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKfvgi_5Ap2XpkmaxzGmEyaOzeFjSdN0RtqmJPGh396ODp_uuLvfH-6H0COBBSEgn7eH3SIFIhYpl1Km2RWaEcbyJKWcXI89CEikhPwW3YXwAwA5ydkMDTvjravwOkTbqmhdh12NVYeXTetCxNPaanywp041-BhsdzpPgw3RdBFvXOsadxrwl43feNn3jdVTTnR4b0JvvYrOD3ivosHvRoVfb9qRvEc3tWqCebjUOTq-rD9Xm2T78fq2Wm4TTYHFhLGKyyrlFa1KxnRF81SwkhimTCmyTFVCEE2Z4TylQnOhGAipICsJ1UIpoHMEU672LgRv6qL346t-KAgUZ3XFqK44qysu6kbkaUKsMeb_XEiScZnTP4p5bJ4</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Erden, Fatih</creator><creator>Cetin, A. Enis</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201707</creationdate><title>Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement</title><author>Erden, Fatih ; Cetin, A. Enis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-55d69d26d3db55cd38275b1e5aeb744ad771c35e66237c67a5079a04b13c7aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Delays</topic><topic>Estimation</topic><topic>Harmonic analysis</topic><topic>Periodicity</topic><topic>persistent homology</topic><topic>pyro-electric infrared (PIR) sensor</topic><topic>Reliability</topic><topic>respiratory rate (RR)</topic><topic>Sensor arrays</topic><topic>Three-dimensional displays</topic><topic>topological data analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erden, Fatih</creatorcontrib><creatorcontrib>Cetin, A. Enis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erden, Fatih</au><au>Cetin, A. Enis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2017-07</date><risdate>2017</risdate><volume>24</volume><issue>7</issue><spage>958</spage><epage>962</epage><pages>958-962</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2017.2699924</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2017-07, Vol.24 (7), p.958-962 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2017_2699924 |
source | IEEE Electronic Library (IEL) |
subjects | Delays Estimation Harmonic analysis Periodicity persistent homology pyro-electric infrared (PIR) sensor Reliability respiratory rate (RR) Sensor arrays Three-dimensional displays topological data analysis Topology |
title | Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Period%20Estimation%20of%20an%20Almost%20Periodic%20Signal%20Using%20Persistent%20Homology%20With%20Application%20to%20Respiratory%20Rate%20Measurement&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Erden,%20Fatih&rft.date=2017-07&rft.volume=24&rft.issue=7&rft.spage=958&rft.epage=962&rft.pages=958-962&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2017.2699924&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2017_2699924%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7914698&rfr_iscdi=true |