Period Estimation of an Almost Periodic Signal Using Persistent Homology With Application to Respiratory Rate Measurement

Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-07, Vol.24 (7), p.958-962
Hauptverfasser: Erden, Fatih, Cetin, A. Enis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-frequency techniques have difficulties in yielding efficient online algorithms for almost periodic signals. We describe a new topological method to find the period of signals that have an almost periodic waveform. Proposed method is applied to signals received from a pyro-electric infrared sensor array for the online estimation of the respiratory rate (RR) of a person. Time-varying analog signals captured from the sensors exhibit an almost periodic behavior due to repetitive nature of breathing activity. Sensor signals are transformed into two-dimensional point clouds with a technique that allows preserving the period information. Features, which represent the harmonic structures in the sensor signals, are detected by applying persistent homology and the RR is estimated based on the persistence barcode of the first Betti number. Experiments have been carried out to show that our method makes reliable estimates of the RR.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2017.2699924