Adaptive Multiscale Decomposition of Graph Signals
This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed b...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2016-10, Vol.23 (10), p.1389-1393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 10 |
container_start_page | 1389 |
container_title | IEEE signal processing letters |
container_volume | 23 |
creator | Zheng, Xianwei Tang, Yuan Yan Pan, Jianjia Zhou, Jiantao |
description | This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals. |
doi_str_mv | 10.1109/LSP.2016.2598750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2016_2598750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7539367</ieee_id><sourcerecordid>1835618583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c7debe238f8b7041ed88b4ac9f8c4783b74f9473d15d589a1f901ef137a7d5db3</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJ8cV2bI9VgYJUBFJhtpzkDKmSOsQJEv8eV60YmN4N37t79wi5BDoDoPp2tX6dZRTyWSa0koIekQkIodKM5XAcZyppqjVVp-QshA2lVIESE5LNK9sN9Tcmz2Mz1KG0DSZ3WPq286Eear9NvEuWve0-k3X9sbVNOCcnLgpeHHRK3h_u3xaP6epl-bSYr9KSZXxIS1lhgRlTThWScsBKqYLbUjtVcqlYIbnTXLIKRCWUtuA0BXTApJWVqAo2JTf7vV3vv0YMg2ljPmwau0U_BgOKiTw-oVhEr_-hGz_2u7CRAp7FezmPFN1TZe9D6NGZrq9b2_8YoGZXooklml2J5lBitFztLTUi_uFSMM1yyX4BPcBsGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814247864</pqid></control><display><type>article</type><title>Adaptive Multiscale Decomposition of Graph Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Xianwei ; Tang, Yuan Yan ; Pan, Jianjia ; Zhou, Jiantao</creator><creatorcontrib>Zheng, Xianwei ; Tang, Yuan Yan ; Pan, Jianjia ; Zhou, Jiantao</creatorcontrib><description>This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2016.2598750</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Bipartite graph ; Compaction ; Compressing ; Constants ; Construction costs ; Cost function ; Decomposition ; Discrete wavelet transforms ; Entropy ; graph Fourier transform ; graph signal cost function ; graph wavelet decomposition (GWD) ; Graphs ; Minimum cost ; Signal processing ; Signal processing algorithms ; α-sparsity</subject><ispartof>IEEE signal processing letters, 2016-10, Vol.23 (10), p.1389-1393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-c7debe238f8b7041ed88b4ac9f8c4783b74f9473d15d589a1f901ef137a7d5db3</citedby><cites>FETCH-LOGICAL-c324t-c7debe238f8b7041ed88b4ac9f8c4783b74f9473d15d589a1f901ef137a7d5db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7539367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7539367$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Xianwei</creatorcontrib><creatorcontrib>Tang, Yuan Yan</creatorcontrib><creatorcontrib>Pan, Jianjia</creatorcontrib><creatorcontrib>Zhou, Jiantao</creatorcontrib><title>Adaptive Multiscale Decomposition of Graph Signals</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals.</description><subject>Adaptive algorithms</subject><subject>Bipartite graph</subject><subject>Compaction</subject><subject>Compressing</subject><subject>Constants</subject><subject>Construction costs</subject><subject>Cost function</subject><subject>Decomposition</subject><subject>Discrete wavelet transforms</subject><subject>Entropy</subject><subject>graph Fourier transform</subject><subject>graph signal cost function</subject><subject>graph wavelet decomposition (GWD)</subject><subject>Graphs</subject><subject>Minimum cost</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>α-sparsity</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJ8cV2bI9VgYJUBFJhtpzkDKmSOsQJEv8eV60YmN4N37t79wi5BDoDoPp2tX6dZRTyWSa0koIekQkIodKM5XAcZyppqjVVp-QshA2lVIESE5LNK9sN9Tcmz2Mz1KG0DSZ3WPq286Eear9NvEuWve0-k3X9sbVNOCcnLgpeHHRK3h_u3xaP6epl-bSYr9KSZXxIS1lhgRlTThWScsBKqYLbUjtVcqlYIbnTXLIKRCWUtuA0BXTApJWVqAo2JTf7vV3vv0YMg2ljPmwau0U_BgOKiTw-oVhEr_-hGz_2u7CRAp7FezmPFN1TZe9D6NGZrq9b2_8YoGZXooklml2J5lBitFztLTUi_uFSMM1yyX4BPcBsGw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Zheng, Xianwei</creator><creator>Tang, Yuan Yan</creator><creator>Pan, Jianjia</creator><creator>Zhou, Jiantao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201610</creationdate><title>Adaptive Multiscale Decomposition of Graph Signals</title><author>Zheng, Xianwei ; Tang, Yuan Yan ; Pan, Jianjia ; Zhou, Jiantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c7debe238f8b7041ed88b4ac9f8c4783b74f9473d15d589a1f901ef137a7d5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>Bipartite graph</topic><topic>Compaction</topic><topic>Compressing</topic><topic>Constants</topic><topic>Construction costs</topic><topic>Cost function</topic><topic>Decomposition</topic><topic>Discrete wavelet transforms</topic><topic>Entropy</topic><topic>graph Fourier transform</topic><topic>graph signal cost function</topic><topic>graph wavelet decomposition (GWD)</topic><topic>Graphs</topic><topic>Minimum cost</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>α-sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xianwei</creatorcontrib><creatorcontrib>Tang, Yuan Yan</creatorcontrib><creatorcontrib>Pan, Jianjia</creatorcontrib><creatorcontrib>Zhou, Jiantao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Xianwei</au><au>Tang, Yuan Yan</au><au>Pan, Jianjia</au><au>Zhou, Jiantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Multiscale Decomposition of Graph Signals</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2016-10</date><risdate>2016</risdate><volume>23</volume><issue>10</issue><spage>1389</spage><epage>1393</epage><pages>1389-1393</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2016.2598750</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2016-10, Vol.23 (10), p.1389-1393 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2016_2598750 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Bipartite graph Compaction Compressing Constants Construction costs Cost function Decomposition Discrete wavelet transforms Entropy graph Fourier transform graph signal cost function graph wavelet decomposition (GWD) Graphs Minimum cost Signal processing Signal processing algorithms α-sparsity |
title | Adaptive Multiscale Decomposition of Graph Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Multiscale%20Decomposition%20of%20Graph%20Signals&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zheng,%20Xianwei&rft.date=2016-10&rft.volume=23&rft.issue=10&rft.spage=1389&rft.epage=1393&rft.pages=1389-1393&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2016.2598750&rft_dat=%3Cproquest_RIE%3E1835618583%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814247864&rft_id=info:pmid/&rft_ieee_id=7539367&rfr_iscdi=true |