Adaptive Multiscale Decomposition of Graph Signals

This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2016-10, Vol.23 (10), p.1389-1393
Hauptverfasser: Zheng, Xianwei, Tang, Yuan Yan, Pan, Jianjia, Zhou, Jiantao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1393
container_issue 10
container_start_page 1389
container_title IEEE signal processing letters
container_volume 23
creator Zheng, Xianwei
Tang, Yuan Yan
Pan, Jianjia
Zhou, Jiantao
description This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals.
doi_str_mv 10.1109/LSP.2016.2598750
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2016_2598750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7539367</ieee_id><sourcerecordid>1835618583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c7debe238f8b7041ed88b4ac9f8c4783b74f9473d15d589a1f901ef137a7d5db3</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJ8cV2bI9VgYJUBFJhtpzkDKmSOsQJEv8eV60YmN4N37t79wi5BDoDoPp2tX6dZRTyWSa0koIekQkIodKM5XAcZyppqjVVp-QshA2lVIESE5LNK9sN9Tcmz2Mz1KG0DSZ3WPq286Eear9NvEuWve0-k3X9sbVNOCcnLgpeHHRK3h_u3xaP6epl-bSYr9KSZXxIS1lhgRlTThWScsBKqYLbUjtVcqlYIbnTXLIKRCWUtuA0BXTApJWVqAo2JTf7vV3vv0YMg2ljPmwau0U_BgOKiTw-oVhEr_-hGz_2u7CRAp7FezmPFN1TZe9D6NGZrq9b2_8YoGZXooklml2J5lBitFztLTUi_uFSMM1yyX4BPcBsGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814247864</pqid></control><display><type>article</type><title>Adaptive Multiscale Decomposition of Graph Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Xianwei ; Tang, Yuan Yan ; Pan, Jianjia ; Zhou, Jiantao</creator><creatorcontrib>Zheng, Xianwei ; Tang, Yuan Yan ; Pan, Jianjia ; Zhou, Jiantao</creatorcontrib><description>This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2016.2598750</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Bipartite graph ; Compaction ; Compressing ; Constants ; Construction costs ; Cost function ; Decomposition ; Discrete wavelet transforms ; Entropy ; graph Fourier transform ; graph signal cost function ; graph wavelet decomposition (GWD) ; Graphs ; Minimum cost ; Signal processing ; Signal processing algorithms ; α-sparsity</subject><ispartof>IEEE signal processing letters, 2016-10, Vol.23 (10), p.1389-1393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-c7debe238f8b7041ed88b4ac9f8c4783b74f9473d15d589a1f901ef137a7d5db3</citedby><cites>FETCH-LOGICAL-c324t-c7debe238f8b7041ed88b4ac9f8c4783b74f9473d15d589a1f901ef137a7d5db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7539367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7539367$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Xianwei</creatorcontrib><creatorcontrib>Tang, Yuan Yan</creatorcontrib><creatorcontrib>Pan, Jianjia</creatorcontrib><creatorcontrib>Zhou, Jiantao</creatorcontrib><title>Adaptive Multiscale Decomposition of Graph Signals</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals.</description><subject>Adaptive algorithms</subject><subject>Bipartite graph</subject><subject>Compaction</subject><subject>Compressing</subject><subject>Constants</subject><subject>Construction costs</subject><subject>Cost function</subject><subject>Decomposition</subject><subject>Discrete wavelet transforms</subject><subject>Entropy</subject><subject>graph Fourier transform</subject><subject>graph signal cost function</subject><subject>graph wavelet decomposition (GWD)</subject><subject>Graphs</subject><subject>Minimum cost</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>α-sparsity</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJ8cV2bI9VgYJUBFJhtpzkDKmSOsQJEv8eV60YmN4N37t79wi5BDoDoPp2tX6dZRTyWSa0koIekQkIodKM5XAcZyppqjVVp-QshA2lVIESE5LNK9sN9Tcmz2Mz1KG0DSZ3WPq286Eear9NvEuWve0-k3X9sbVNOCcnLgpeHHRK3h_u3xaP6epl-bSYr9KSZXxIS1lhgRlTThWScsBKqYLbUjtVcqlYIbnTXLIKRCWUtuA0BXTApJWVqAo2JTf7vV3vv0YMg2ljPmwau0U_BgOKiTw-oVhEr_-hGz_2u7CRAp7FezmPFN1TZe9D6NGZrq9b2_8YoGZXooklml2J5lBitFztLTUi_uFSMM1yyX4BPcBsGw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Zheng, Xianwei</creator><creator>Tang, Yuan Yan</creator><creator>Pan, Jianjia</creator><creator>Zhou, Jiantao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201610</creationdate><title>Adaptive Multiscale Decomposition of Graph Signals</title><author>Zheng, Xianwei ; Tang, Yuan Yan ; Pan, Jianjia ; Zhou, Jiantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c7debe238f8b7041ed88b4ac9f8c4783b74f9473d15d589a1f901ef137a7d5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>Bipartite graph</topic><topic>Compaction</topic><topic>Compressing</topic><topic>Constants</topic><topic>Construction costs</topic><topic>Cost function</topic><topic>Decomposition</topic><topic>Discrete wavelet transforms</topic><topic>Entropy</topic><topic>graph Fourier transform</topic><topic>graph signal cost function</topic><topic>graph wavelet decomposition (GWD)</topic><topic>Graphs</topic><topic>Minimum cost</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>α-sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xianwei</creatorcontrib><creatorcontrib>Tang, Yuan Yan</creatorcontrib><creatorcontrib>Pan, Jianjia</creatorcontrib><creatorcontrib>Zhou, Jiantao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Xianwei</au><au>Tang, Yuan Yan</au><au>Pan, Jianjia</au><au>Zhou, Jiantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Multiscale Decomposition of Graph Signals</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2016-10</date><risdate>2016</risdate><volume>23</volume><issue>10</issue><spage>1389</spage><epage>1393</epage><pages>1389-1393</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2016.2598750</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2016-10, Vol.23 (10), p.1389-1393
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2016_2598750
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Bipartite graph
Compaction
Compressing
Constants
Construction costs
Cost function
Decomposition
Discrete wavelet transforms
Entropy
graph Fourier transform
graph signal cost function
graph wavelet decomposition (GWD)
Graphs
Minimum cost
Signal processing
Signal processing algorithms
α-sparsity
title Adaptive Multiscale Decomposition of Graph Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Multiscale%20Decomposition%20of%20Graph%20Signals&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zheng,%20Xianwei&rft.date=2016-10&rft.volume=23&rft.issue=10&rft.spage=1389&rft.epage=1393&rft.pages=1389-1393&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2016.2598750&rft_dat=%3Cproquest_RIE%3E1835618583%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814247864&rft_id=info:pmid/&rft_ieee_id=7539367&rfr_iscdi=true