Adaptive Multiscale Decomposition of Graph Signals

This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2016-10, Vol.23 (10), p.1389-1393
Hauptverfasser: Zheng, Xianwei, Tang, Yuan Yan, Pan, Jianjia, Zhou, Jiantao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2016.2598750