Adaptive Multiscale Decomposition of Graph Signals
This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed b...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2016-10, Vol.23 (10), p.1389-1393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an adaptive multiscale decomposition algorithm for graph signals. We develop two types of graph signal cost functions: α-sparsity functional and graph signal entropies, to capture the energy compaction of the signal components. The adaptive decomposition can then be constructed by applying a minimum cost constraint during the full subband decomposition. The proposed adaptive decomposition is shown to outperform graph wavelet decomposition in compressing nonpiecewise constant graph signals. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2016.2598750 |