Variance Stabilization for Noisy+Estimate Combination in Iterative Poisson Denoising

We denoise Poisson images with an iterative algorithm that progressively improves the effectiveness of variance-stabilizing transformations (VST) for Gaussian denoising filters. At each iteration, a combination of the Poisson observations with the denoised estimate from the previous iteration is tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2016-08, Vol.23 (8), p.1086-1090
Hauptverfasser: Azzari, Lucio, Foi, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We denoise Poisson images with an iterative algorithm that progressively improves the effectiveness of variance-stabilizing transformations (VST) for Gaussian denoising filters. At each iteration, a combination of the Poisson observations with the denoised estimate from the previous iteration is treated as scaled Poisson data and filtered through a VST scheme. Due to the slight mismatch between a true scaled Poisson distribution and this combination, a special exact unbiased inverse is designed. We present an implementation of this approach based on the BM3D Gaussian denoising filter. With a computational cost at worst twice that of the noniterative scheme, the proposed algorithm provides significantly better quality, particularly at low signal-to-noise ratio, outperforming much costlier state-of-the-art alternatives.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2016.2580600