Variance Stabilization for Noisy+Estimate Combination in Iterative Poisson Denoising
We denoise Poisson images with an iterative algorithm that progressively improves the effectiveness of variance-stabilizing transformations (VST) for Gaussian denoising filters. At each iteration, a combination of the Poisson observations with the denoised estimate from the previous iteration is tre...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2016-08, Vol.23 (8), p.1086-1090 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We denoise Poisson images with an iterative algorithm that progressively improves the effectiveness of variance-stabilizing transformations (VST) for Gaussian denoising filters. At each iteration, a combination of the Poisson observations with the denoised estimate from the previous iteration is treated as scaled Poisson data and filtered through a VST scheme. Due to the slight mismatch between a true scaled Poisson distribution and this combination, a special exact unbiased inverse is designed. We present an implementation of this approach based on the BM3D Gaussian denoising filter. With a computational cost at worst twice that of the noniterative scheme, the proposed algorithm provides significantly better quality, particularly at low signal-to-noise ratio, outperforming much costlier state-of-the-art alternatives. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2016.2580600 |