Feature Selection Embedded Subspace Clustering

We propose a new subspace clustering method that integrates feature selection into subspace clustering. Rather than using all features to construct a low-rank representation of the data, we find such a representation using only relevant features, which helps in revealing more accurate data relations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2016-07, Vol.23 (7), p.1018-1022
Hauptverfasser: Peng, Chong, Kang, Zhao, Yang, Ming, Cheng, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new subspace clustering method that integrates feature selection into subspace clustering. Rather than using all features to construct a low-rank representation of the data, we find such a representation using only relevant features, which helps in revealing more accurate data relationships. Two variants are proposed by using both convex and nonconvex rank approximations. Extensive experimental results confirm the effectiveness of the proposed method and models.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2016.2573159