Improved MUSIC Algorithm for Multiple Noncoherent Subarrays

This work addresses the direction-of-arrival (DOA) estimation issue with multiple noncoherent subarrays. We use a maximum likelihood approach to derive a weighted MUSIC (w-MUSIC) algorithm for such arrays, which obtains the overall spatial spectrum via combining the weighted MUSIC spectrum of the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2014-05, Vol.21 (5), p.527-530
Hauptverfasser: Wen, Fei, Wan, Qun, Fan, Rong, Wei, Hewen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work addresses the direction-of-arrival (DOA) estimation issue with multiple noncoherent subarrays. We use a maximum likelihood approach to derive a weighted MUSIC (w-MUSIC) algorithm for such arrays, which obtains the overall spatial spectrum via combining the weighted MUSIC spectrum of the subarrays. Theoretical analysis and numerical examples demonstrate that the w-MUSIC algorithm has a better performance compared to a previously introduced MUSIC algorithm for noncoherent subarrays.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2014.2308271