Foreground-Adaptive Background Subtraction
Background subtraction is a powerful mechanism for detecting change in a sequence of images that finds many applications. The most successful background subtraction methods apply probabilistic models to background intensities evolving in time; nonparametric and mixture-of-Gaussians models are but tw...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2009-05, Vol.16 (5), p.390-393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background subtraction is a powerful mechanism for detecting change in a sequence of images that finds many applications. The most successful background subtraction methods apply probabilistic models to background intensities evolving in time; nonparametric and mixture-of-Gaussians models are but two examples. The main difficulty in designing a robust background subtraction algorithm is the selection of a detection threshold. In this paper, we adapt this threshold to varying video statistics by means of two statistical models. In addition to a nonparametric background model, we introduce a foreground model based on small spatial neighborhood to improve discrimination sensitivity. We also apply a Markov model to change labels to improve spatial coherence of the detections. The proposed methodology is applicable to other background models as well. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2009.2016447 |