Online adaptive blind deconvolution based on third-order moments

Traditional methods for online adaptive blind deconvolution using higher order statistics are often based on even-order moments, due to the fact that the systems considered commonly feature symmetric source signals (i.e., signals having a symmetric probability density function). However, asymmetric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2005-12, Vol.12 (12), p.863-866
Hauptverfasser: Paajarvi, P., LeBlanc, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 866
container_issue 12
container_start_page 863
container_title IEEE signal processing letters
container_volume 12
creator Paajarvi, P.
LeBlanc, J.P.
description Traditional methods for online adaptive blind deconvolution using higher order statistics are often based on even-order moments, due to the fact that the systems considered commonly feature symmetric source signals (i.e., signals having a symmetric probability density function). However, asymmetric source signals facilitate blind deconvolution based on odd-order moments. In this letter, we show that third-order moments give the benefits of faster convergence of algorithms and increased robustness to additive Gaussian noise. The convergence rates for two algorithms based on third- and fourth-order moments, respectively, are compared for a simulated ultra-wideband communication channel.
doi_str_mv 10.1109/LSP.2005.859496
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2005_859496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1542119</ieee_id><sourcerecordid>2425090331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-abad5dbfa7faab9d563f9c9f7d24f3c5fb0c11977bb6efed5fe728ef45ef655d3</originalsourceid><addsrcrecordid>eNpFkM1LxDAUxIMouK6ePXgpnu1u0jRtcnNZP2FhBT-uIWletEu3qUm74n9vloqe3jz4zTAMQucEzwjBYr56fpplGLMZZyIXxQGaEMZ4mtGCHEaNS5wKgfkxOglhgzHmhLMJul63Td1Coozq-noHiY6vSQxUrt25Zuhr1yZaBTBJFP1H7U3qvAGfbN0W2j6coiOrmgBnv3eKXu9uX5YP6Wp9_7hcrNKKFkWfKq0MM9qq0iqlhWEFtaIStjRZbmnFrMYVIaIstS7AgmEWyoyDzRnYgjFDp-hqzA1f0A1adr7eKv8tnarlTf22kM6_y6YfJMEsExG_HPHOu88BQi83bvBtbCg5p5TzXLAIzUeo8i4ED_YvlWC5H1XGUeV-VDmOGh0Xo6MGgH-a5VksT38Adgp1CA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883388495</pqid></control><display><type>article</type><title>Online adaptive blind deconvolution based on third-order moments</title><source>IEEE Electronic Library (IEL)</source><creator>Paajarvi, P. ; LeBlanc, J.P.</creator><creatorcontrib>Paajarvi, P. ; LeBlanc, J.P.</creatorcontrib><description>Traditional methods for online adaptive blind deconvolution using higher order statistics are often based on even-order moments, due to the fact that the systems considered commonly feature symmetric source signals (i.e., signals having a symmetric probability density function). However, asymmetric source signals facilitate blind deconvolution based on odd-order moments. In this letter, we show that third-order moments give the benefits of faster convergence of algorithms and increased robustness to additive Gaussian noise. The convergence rates for two algorithms based on third- and fourth-order moments, respectively, are compared for a simulated ultra-wideband communication channel.</description><identifier>ISSN: 1070-9908</identifier><identifier>ISSN: 1558-2361</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2005.859496</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filtering ; blind equalization ; Blind equalizers ; Communication channels ; Convergence ; Deconvolution ; Entropy ; Finite impulse response filter ; Gaussian processes ; Probability density function ; Probability distribution ; Signal Processing ; Signalbehandling ; third-order moments ; Ultra wideband technology</subject><ispartof>IEEE signal processing letters, 2005-12, Vol.12 (12), p.863-866</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-abad5dbfa7faab9d563f9c9f7d24f3c5fb0c11977bb6efed5fe728ef45ef655d3</citedby><cites>FETCH-LOGICAL-c366t-abad5dbfa7faab9d563f9c9f7d24f3c5fb0c11977bb6efed5fe728ef45ef655d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1542119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,550,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1542119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-10529$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Paajarvi, P.</creatorcontrib><creatorcontrib>LeBlanc, J.P.</creatorcontrib><title>Online adaptive blind deconvolution based on third-order moments</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Traditional methods for online adaptive blind deconvolution using higher order statistics are often based on even-order moments, due to the fact that the systems considered commonly feature symmetric source signals (i.e., signals having a symmetric probability density function). However, asymmetric source signals facilitate blind deconvolution based on odd-order moments. In this letter, we show that third-order moments give the benefits of faster convergence of algorithms and increased robustness to additive Gaussian noise. The convergence rates for two algorithms based on third- and fourth-order moments, respectively, are compared for a simulated ultra-wideband communication channel.</description><subject>Adaptive filtering</subject><subject>blind equalization</subject><subject>Blind equalizers</subject><subject>Communication channels</subject><subject>Convergence</subject><subject>Deconvolution</subject><subject>Entropy</subject><subject>Finite impulse response filter</subject><subject>Gaussian processes</subject><subject>Probability density function</subject><subject>Probability distribution</subject><subject>Signal Processing</subject><subject>Signalbehandling</subject><subject>third-order moments</subject><subject>Ultra wideband technology</subject><issn>1070-9908</issn><issn>1558-2361</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNpFkM1LxDAUxIMouK6ePXgpnu1u0jRtcnNZP2FhBT-uIWletEu3qUm74n9vloqe3jz4zTAMQucEzwjBYr56fpplGLMZZyIXxQGaEMZ4mtGCHEaNS5wKgfkxOglhgzHmhLMJul63Td1Coozq-noHiY6vSQxUrt25Zuhr1yZaBTBJFP1H7U3qvAGfbN0W2j6coiOrmgBnv3eKXu9uX5YP6Wp9_7hcrNKKFkWfKq0MM9qq0iqlhWEFtaIStjRZbmnFrMYVIaIstS7AgmEWyoyDzRnYgjFDp-hqzA1f0A1adr7eKv8tnarlTf22kM6_y6YfJMEsExG_HPHOu88BQi83bvBtbCg5p5TzXLAIzUeo8i4ED_YvlWC5H1XGUeV-VDmOGh0Xo6MGgH-a5VksT38Adgp1CA</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Paajarvi, P.</creator><creator>LeBlanc, J.P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20051201</creationdate><title>Online adaptive blind deconvolution based on third-order moments</title><author>Paajarvi, P. ; LeBlanc, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-abad5dbfa7faab9d563f9c9f7d24f3c5fb0c11977bb6efed5fe728ef45ef655d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adaptive filtering</topic><topic>blind equalization</topic><topic>Blind equalizers</topic><topic>Communication channels</topic><topic>Convergence</topic><topic>Deconvolution</topic><topic>Entropy</topic><topic>Finite impulse response filter</topic><topic>Gaussian processes</topic><topic>Probability density function</topic><topic>Probability distribution</topic><topic>Signal Processing</topic><topic>Signalbehandling</topic><topic>third-order moments</topic><topic>Ultra wideband technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paajarvi, P.</creatorcontrib><creatorcontrib>LeBlanc, J.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paajarvi, P.</au><au>LeBlanc, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online adaptive blind deconvolution based on third-order moments</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>12</volume><issue>12</issue><spage>863</spage><epage>866</epage><pages>863-866</pages><issn>1070-9908</issn><issn>1558-2361</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Traditional methods for online adaptive blind deconvolution using higher order statistics are often based on even-order moments, due to the fact that the systems considered commonly feature symmetric source signals (i.e., signals having a symmetric probability density function). However, asymmetric source signals facilitate blind deconvolution based on odd-order moments. In this letter, we show that third-order moments give the benefits of faster convergence of algorithms and increased robustness to additive Gaussian noise. The convergence rates for two algorithms based on third- and fourth-order moments, respectively, are compared for a simulated ultra-wideband communication channel.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2005.859496</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2005-12, Vol.12 (12), p.863-866
issn 1070-9908
1558-2361
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2005_859496
source IEEE Electronic Library (IEL)
subjects Adaptive filtering
blind equalization
Blind equalizers
Communication channels
Convergence
Deconvolution
Entropy
Finite impulse response filter
Gaussian processes
Probability density function
Probability distribution
Signal Processing
Signalbehandling
third-order moments
Ultra wideband technology
title Online adaptive blind deconvolution based on third-order moments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20adaptive%20blind%20deconvolution%20based%20on%20third-order%20moments&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Paajarvi,%20P.&rft.date=2005-12-01&rft.volume=12&rft.issue=12&rft.spage=863&rft.epage=866&rft.pages=863-866&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2005.859496&rft_dat=%3Cproquest_RIE%3E2425090331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883388495&rft_id=info:pmid/&rft_ieee_id=1542119&rfr_iscdi=true