Online adaptive blind deconvolution based on third-order moments
Traditional methods for online adaptive blind deconvolution using higher order statistics are often based on even-order moments, due to the fact that the systems considered commonly feature symmetric source signals (i.e., signals having a symmetric probability density function). However, asymmetric...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2005-12, Vol.12 (12), p.863-866 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional methods for online adaptive blind deconvolution using higher order statistics are often based on even-order moments, due to the fact that the systems considered commonly feature symmetric source signals (i.e., signals having a symmetric probability density function). However, asymmetric source signals facilitate blind deconvolution based on odd-order moments. In this letter, we show that third-order moments give the benefits of faster convergence of algorithms and increased robustness to additive Gaussian noise. The convergence rates for two algorithms based on third- and fourth-order moments, respectively, are compared for a simulated ultra-wideband communication channel. |
---|---|
ISSN: | 1070-9908 1558-2361 1558-2361 |
DOI: | 10.1109/LSP.2005.859496 |