Plug'n Play Task-Level Autonomy for Robotics Using POMDPs and Probabilistic Programs
We describe AOS, the first general-purpose system for model-based control of autonomous robots using AI planning that fully supports partial observability and noisy sensing. The AOS provides a code-based language for specifying a generative model of the system, making model specification easier and...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-01, Vol.9 (1), p.587-594 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe AOS, the first general-purpose system for model-based control of autonomous robots using AI planning that fully supports partial observability and noisy sensing. The AOS provides a code-based language for specifying a generative model of the system, making model specification easier and model sampling efficient. It provides a language for specifying the relation between the model and the code, using which it auto-generates all required integration code. This allows Plug'n Play behavior, which facilitates incremental and modular system design. Extensive experiments on real and simulated robotic platforms demonstrate these advantages. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2023.3334682 |